Clinical Trials Using Thiotepa

Clinical trials are research studies that involve people. The clinical trials on this list are studying Thiotepa. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 36
1 2 Next >

  • Iobenguane I-131 or Crizotinib and Standard Therapy in Treating Younger Patients with Newly-Diagnosed High-Risk Neuroblastoma or Ganglioneuroblastoma

    This phase III trial studies iobenguane I-131 or crizotinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Crizotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or crizotinib and standard therapy may work better compared to crizotinib and standard therapy alone in treating younger patients with neuroblastoma or ganglioneuroblastoma.
    Location: 122 locations

  • Standard Chemotherapy in Treating Young Patients with Medulloblastoma or Other Central Nervous System Primitive Neuro-ectodermal Tumors

    This phase IV trial studies how well standard chemotherapy works in treating young patients with medulloblastoma or other central nervous system primitive neuro-ectodermal tumors. Drugs used in standard chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: 37 locations

  • Dinutuximab, Sargramostim, and Combination Chemotherapy in Treating Patients with Newly Diagnosed High-Risk Neuroblastoma Undergoing Stem Cell Transplant

    This phase II trial studies the side effects and how well dinutuximab and sargramostim work with combination chemotherapy in patients with high-risk neuroblastoma undergoing stem cell transplant. Immunotherapy with monoclonal antibodies, such as dinutuximab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Sargramostim helps the body produce normal infection-fighting white blood cells. Giving chemotherapy before a stem cell transplant, with drugs such as cisplatin, etoposide, vincristine, doxorubicin, cyclophosphamide, thiotepa, melphalan, etoposide, carboplatin, topotecan, and isotretinoin, helps kill any cancer cells that are in the body and helps make room in a patient's bone marrow for new blood-forming cells (stem cells). Giving dinutuximab and sargramostim with combination chemotherapy may work better in treating patients with high-risk neuroblastoma undergoing stem cell transplant.
    Location: 6 locations

  • Eliminating Total Body Irradiation before a Donor Stem Cell Transplant in Treating Younger Patients with NGS-MRD Negative B-Acute Lymphoblastic Leukemia, the EndRAD Trial

    This phase II trial studies how well eliminating total body irradiation (TBI) before a donor stem cell transplant works in treating younger patients with next-generation sequencing (NGS) minimal residual disease (MRD) negative B-acute lymphoblastic leukemia. TBI is normally used with chemotherapy in a conditioning regimen before a donor stem cell transplant and is considered related to improved outcomes. However, TBI has negative impacts on long-term growth and cognitive function of children and young adults. This study evaluates whether or not patients with NGS-MRD negative B-acute lymphoblastic leukemia have the same or similar medical outcome if they do not receive TBI before a donor stem cell transplant.
    Location: 5 locations

  • Gemcitabine Hydrochloride, Paclitaxel, Oxaliplatin, High-Dose Chemotherapy, and Stem Cell Transplant in Treating Patients with Recurrent or Refractory Central Nervous System Germ Cell Tumors

    This phase II trial studies how well gemcitabine hydrochloride, paclitaxel, oxaliplatin, high dose chemotherapy, and stem cell transplant work in treating patients with central nervous system germ cell tumors that have come back after a period of improvement or that have not responded to previous treatment. Drugs used in chemotherapy, such as gemcitabine hydrochloride, paclitaxel and oxaliplatin work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a stem cell transplant helps kill any cancer cells that are in the body and helps make room in the patient’s bone marrow for new blood-forming cells (stem cells) to grow. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Giving gemcitabine hydrochloride, paclitaxel, oxaliplatin, high dose chemotherapy, and stem cell transplant may work better in treating patients with central nervous system term cell tumors.
    Location: 5 locations

  • Haploidentical Bone Marrow Transplantation in Sickle Cell Patients (BMT CTN 1507)

    This is a Phase II, single arm, multi-center trial, designed to estimate the efficacy and toxicity of haploidentical bone marrow transplantation (BMT) in patients with sickle cell disease (SCD). Based on their age and entry criteria patients are stratified into two groups: (1) children with SCD with strokes; and (2) adults with severe SCD.
    Location: 5 locations

  • Selective Depletion of CD45RA+ T Cells from Allogeneic Peripheral Blood Stem Cell Grafts from HLA-Matched Related and Unrelated Donors in Preventing GVHD

    This phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo / radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo / radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naive T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naive T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo / radiotherapy who can receive donor grafts from related or unrelated donors.
    Location: 2 locations

  • Cyclophosphamide or Thalidomide after Stem Cell Transplant in Treating Younger Patients with Solid Tumors

    This early phase I pilot clinical trial studies cyclophosphamide or thalidomide following high dose chemotherapy and stem cell transplant in treating younger patients with solid tumors. Drugs such as cyclophosphamide and thalidomide suppress the growth of new blood vessels to tumors. Blocking blood flow to tumors after receiving high dose chemotherapy and a stem cell transplant may prevent the tumors from coming back or continuing to grow.
    Location: 2 locations

  • Valproic Acid Expanded Umbilical Cord Blood Stem Cells in Treating Adult Patients with Hematological Malignancies Undergoing Donor Stem Cell Transplant

    This phase I trial studies the effects of valproic acid expanded umbilical cord blood stem cells in treating adult patients with hematological malignancies undergoing donor stem cell transplant. Expanding or growing umbilical cord blood stem cells in a laboratory using valproic acid may lead to faster white blood cell count recovery, lower the risk of infections, and improve transplant results compared to umbilical cord blood stem cells that have not been expanded.
    Location: Icahn School of Medicine at Mount Sinai, New York, New York

  • CD45RA Depleted T Cell Infusion after Alpha / Beta Depleted Stem Cell Transplant for the Reduction of Complications in Patients at Risk for Viral or Fungal Infections

    This phase I trial studies the side effects of CD45RA depleted T cell infusion given after an alpha / beta depleted stem cell transplant, and to see how well it works in reducing complications in patients at risk for viral or fungal infections. There is a higher rate of complications using cells from an unrelated or partially matched related donor. Some donor cells may cause a complication called graft versus host disease (GVHD) and an infection with the Epstein-Barr virus (EBV). In this study, the CliniMACs device is used before the transplant to remove alpha / beta T cells that may cause GVHD and B cells that carry EBV. The device is also used to remove CD45RA T cells. Giving CD45RA depleted T cells after the transplant may reduce some of the complications of the transplant and decrease the time it takes for the new stem cells to grow in the body.
    Location: Children's Hospital of Philadelphia, Philadelphia, Pennsylvania

  • Naive T Cell Depletion for Preventing Chronic Graft-versus-Host Disease in Children and Young Adults with Blood Cancers Undergoing Donor Stem Cell Transplant

    This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body’s normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.
    Location: 7 locations

  • Donor T Cell Depletion in Preventing Graft Versus Host Disease in Patients with Blood Cancer Undergoing a Donor Stem Cell Transplant

    This phase II trial studies donor T cell depletion in preventing graft versus host disease (GVHD) in patients with blood cancer undergoing a donor stem cell transplant. Donor stem cell transplants, especially in the mismatched donor setting, are associated with increased risk for GVHD, a condition where the transplanted donor white blood cells attack your body’s normal tissues. Using a cell separation device may remove a subset of white blood cells (called alpha / beta T cells) from the donor product before the product is transplanted. This study is being done to assess whether this manipulation (called selective T cell depletion) will reduce the risk of GVHD and improve transplant outcome.
    Location: Dana-Farber Cancer Institute, Boston, Massachusetts

  • Alpha Beta T-cells and CD19 B-cells Depleted Stem Cell Transplant in Treating Patients with Non-Malignant Blood and Immune Disorders

    This phase II trial studies how well alpha beta T-cells and CD19 B-cells depleted stem cell transplant works in treating patients with blood and immune disorders. Donor stem cell transplants contain kinds of white blood cells called T-cells and B-cells along with all the blood-forming cells that make up a healthy immune system. Sometimes donor stem cells are referred to as the "graft" and the patient receiving the "graft" is called the "host." Graft versus host disease (GVHD) and posttransplant lymphoproliferative disease (PTLD) are side effects that can occur after transplantation. Removing alpha-beta T cells and CD19 B-cells from donor cells may help diminish these complications.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Donor Stem Cell Transplant using Alpha / Beta+ T-Cell Depletion in Treating Patients with Hematologic Malignancies

    This phase II trial studies the side effects of donor stem cell transplant using allogeneic TCR alpha / beta-positive T-lymphocyte-depleted peripheral blood stem cells (alpha / beta positive [+] T-cell depletion) in treating patients with hematologic malignancies. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient’s immune cells and help destroy any remaining cancer cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells called graft-versus-host disease. Removing the T cells from the donor cells before the transplant may stop this from happening.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Tocilizumab in Improving Graft-Versus-Host Disease and Early Side Effects in Patients with Blood Cancers Undergoing Umbilical Cord Blood Transplant

    This phase II trial studies how well tocilizumab works in improving graft-versus-host disease (GVHD) and early side effects in patients with blood cancers undergoing umbilical cord blood transplant. Giving chemotherapy and total-body irradiation before an umbilical cord blood transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called GVHD). Giving tocilizumab in addition to the standard approach for GVHD prevention after the transplant may stop this from happening.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Donor Stem Cell Transplant in Treating Younger Patients with Hematologic Malignancies or Myelodysplasia

    This phase I / II trial studies how well stem cell transplant from partially matched related donors works in treating younger patients with hematologic malignancies or myelodysplasia. Donor stem cell transplant is a procedure in which a patient receives blood-forming stem cells (cells from which all blood cells develop) from a genetically similar, but not identical, donor. Ideally, patients undergoing donor stem cell transplant receive a stem cell graft from a matched sibling; however, less than 30% of patients will have such a donor. There is a high likelihood of being unable to identify a perfect matched unrelated donor. Stem cell transplant from a partially matched related donor may result in result in successful engraftment and rapid immune rebuilding while maintaining a low risk of graft versus host disease.
    Location: Nationwide Children's Hospital, Columbus, Ohio

  • Thiotepa, Fludarabine Phosphate, and Melphalan Hydrochloride in Treating Patients with Blood Cancer Undergoing Donor Stem Cell Transplant

    This phase II trial studies how well thiotepa, fludarabine phosphate, and melphalan hydrochloride work in treating patients with blood cancer who are undergoing a donor stem cell transplant. Drugs used in chemotherapy, such as thiotepa, fludarabine phosphate, and melphalan hydrochloride work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: Case Comprehensive Cancer Center, Cleveland, Ohio

  • Haploidentical Stem Cell Selection using Miltenyi CliniMACS CD34 Reagent System in Treating Participants with High-Risk Hematologic Disorders

    This phase I / II trial studies the side effects and how well haploidentical stem cells selected using Miltenyi CliniMACS CD34 reagent system works in treating participants with high-risk hematologic disorders. Stem cells selected using Miltenyi CliniMACS CD34 reagent system from a half-matched donor, may increase the number of cells given to participants during stem cell transplantation in combination with umbilical cord blood transplantation.
    Location: University of Colorado Hospital, Aurora, Colorado

  • A Donor Stem Cell Transplant (Alpha / Beta T Cell and CD19+ B Cell Depleted Stem Cells) in Treating Patients with Primary Immunodeficiencies

    This phase II trial studies how well a donor stem cell transplant with alpha / beta T cell and CD19+ B cell depleted stem cells works in treating patients with primary immunodeficiencies. Sometimes the transplanted cells from a donor can attack the body's normal cells (called graft-versus-host disease). Removing the T cells from the donor cells before the transplant may stop this from happening. B cells sometimes can contribute to development of a virus that leads to enlarged lymph nodes. This is known as Epstein Bar virus associated lymphoproliferative disorder. Removing B cells before the transplant may stop this from happening. A donor stem cell transplant with alpha / beta T cell and CD19+ B cell depleted stem cells may reduce some of the complications of the transplant and decrease the time it takes for the new stem cells to establish a new immune system.
    Location: Children's Hospital of Philadelphia, Philadelphia, Pennsylvania

  • Partially HLA-Mismatched Related Donor Stem Cell Transplant Using Killer Immunoglobulin Receptor and Human Leukocyte Antigen Based Donor Selection in Treating Patients with Hematologic Malignancies

    This pilot clinical trial studies how well partially human leukocyte antigen (HLA)-mismatched related donor stem cell transplant using killer immunoglobulin receptor or HLA based donor selection works in treating patients with hematologic malignancies. Partially mismatched donor stem cells may reduce the risk of cancer recurring after transplant.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Busulfan, Fludarabine Phosphate, and Post-Transplant Cyclophosphamide in Treating Patients with Blood Cancer Undergoing Donor Stem Cell Transplant

    This phase II trial studies the side effect of busulfan, fludarabine phosphate, and post-transplant cyclophosphamide in treating patients with blood cancer undergoing donor stem cell transplant. Drugs used in chemotherapy, such as busulfan, fludarabine phosphate and cyclophosphamide work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy such as busulfan and fludarabine phosphate before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclophosphamide after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Blinatumomab and T Cell Depleted Donor Blood Cell Transplant in Treating Younger Patients with Relapsed or Refractory Hematologic Malignancy after a Previous Transplant

    This phase II trial studies how well blinatumomab and T cell depleted donor blood cell transplant work in treating children and young adults with hematologic cancer that has not responded or has come back after a previous transplant. White blood cells from donors may be able to kill cancer cells in patients with hematologic cancer. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Removing the T cells from the donor cells before the transplant may stop this from happening. Monoclonal antibodies, such as blinatumomab, may interfere with the ability of cancer cells to grow and spread. Giving blinatumomab after a blood cell transplant may destroy any remaining cancer cells.
    Location: St. Jude Children's Research Hospital, Memphis, Tennessee

  • Genomic Based Assignment of Therapy in Advanced Urothelial Carcinoma

    Background: Advanced urothelial cancer has no cure. But only a few chemotherapy drugs have been tested for it. The Co-eXpression ExtrapolatioN (COXEN) model predicts if cells respond to treatment. It may also help determine which drugs fight urothelial cancer based on the characteristics of a tumor. Researchers want to test if this model can choose the best therapy for advanced urothelial cancer within 3 weeks and how tumors respond to the next best therapy. Objective: To test if the COXEN model can choose the best therapy for advanced urothelial cancer within 3 weeks. Eligibility: People ages 18 and older whose urothelial cancer has spread after at least 1 line of chemotherapy Design: Participants will be screened with medical history, physical exam, blood and urine tests, and tumor scans. Participants will provide a tumor sample from a previous surgery and a new biopsy. A needle will remove a small piece of tumor. Participants will repeat screening tests, plus have an EKG and scan. For the scan, they will get an injection of radioactive drug. They will lie in a machine that takes pictures. Participants will take the drugs assigned by the COXEN model. They will have visits every 2 3 weeks. These will include blood and urine tests. Participants will have tumor scans every 8 9 weeks. Participants may have another biopsy. Participants will take the drugs until they can t tolerate the side effects or their cancer worsens. They may be assigned to a second COXEN therapy. Participants will have a follow-up visit 4 5 weeks after their last drug dose. Participants will be contacted by phone every few months until death. ...
    Location: National Institutes of Health Clinical Center, Bethesda, Maryland

  • Myeloablative or Reduced-Intensity Conditioning Regimen in Treating Patients with High-Risk, Relapsed, or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome Undergoing Donor Stem Cell Transplant

    This phase II trial studies the side effects and how well a myeloablative or reduced-intensity conditioning regimen works in treating patients with acute myeloid leukemia or myelodysplastic syndrome that is high-risk, has come back, or does not respond to treatment. Giving chemotherapy (myeloablative or reduced-intensity conditioning regimen) before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When healthy stem cells from a donor that have been genetically modified are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving tacrolimus or cyclosporine after the transplant may stop this from happening. It is not yet known whether myeloablative or reduced-intensity conditioning regimens given before the transplant will work better in treating patients with acute myeloid leukemia or myelodysplastic syndrome.
    Location: Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania

  • High-Dose Chemotherapy and Stem Cell Transplant in Treating Patients with High-Risk Neuroblastoma

    This phase II trial studies how well high-dose, or myeloablative, chemotherapy and stem cell transplant works in treating patients with neuroblastoma that is at high risk of spreading. Myeloablative chemotherapy uses high doses of chemotherapy to kill cells in the bone marrow, both cancer cells and healthy cells. Healthy stem cells from the patient that were collected before chemotherapy are then returned to the patient in a stem cell transplant to replace the cells that were killed by chemotherapy. Myeloablative chemotherapy and stem cell transplant may be an effective treatment for patients with high-risk neuroblastoma.
    Location: University of Minnesota / Masonic Cancer Center, Minneapolis, Minnesota


1 2 Next >