Skip to main content
An official website of the United States government
Email

Season 2 – Episode 6: Engineering a Cancer Career

In this episode, we hear from Dr. Jennifer Couch, Chief of the Biophysics, Bioengineering, and Computational Sciences Branch in NCI's Division of Cancer Biology, and Dr. Manu Platt, Director of the Center for Biomedical Engineering Technology Acceleration at the National Institute of Biomedical Imaging and Bioengineering. They discuss the importance of integrating physical sciences, biology, and engineering in research. They highlight the benefits of collaboration and the formation of transdisciplinary teams. Drs. Couch and Platt also offer advice to those interested in pursuing a career in science and those who are early in their research careers. You can expect to learn all this and much more! 

Listen and Subscribe to Inside Cancer Careers

Episode Guest

Dr. Jennifer Couch

Jennifer Couch, Ph.D.

Dr. Jennifer Couch leads the branch by developing and supporting basic research in technology development and molecular applications, biophysical biology, and computational/mathematical methods. She manages a portfolio of grants focusing on multiscale modeling, bioinformatics, citizen science, and data science. Additionally, Dr. Couch's areas of expertise include artificial intelligence (AI), molecular applications, structural biology, and biotechnology.

Along with her DCB responsibilities, Dr. Couch is also a member of trans-NCI, trans-NIH, and trans-agency groups, including the Interagency Modeling and Analysis Group (IMAG), the NIH Genomic Data Sharing Policy (GDS) Implementation Working Group (PIWG), NCI SBIR Technology Advisory Group (TAG), NIH Citizen Science Working Group, NIH Microbiome Interest Group, and NCI-NBIB Technology Interest Group. She also co-chairs a Cancer Moonshot Implementation Team and is the NIH Citizen Science and Crowdsourcing Coordinator for a congressional initiative that helps NIH engage communities in addressing societal needs and accelerating biomedical science, technology, and innovation. 

Dr. Manu Platt

Manu Platt, Ph.D.

Dr. Manu Platt is director of the NIH-wide Center for Biomedical Engineering Technology Acceleration (BETA Center), housed within the National Institute of Biomedical Imaging and Bioengineering (NIBIB) Intramural Research Program. The BETA Center serves as a model to bring a focused engineering approach for NIH researchers across disciplines to accelerate the development, validation and dissemination of cutting-edge technologies As the BETA Center director, Platt will work to expand opportunities for biomedical engineering training and professional growth, including supporting individuals from diverse backgrounds. In addition, Dr. Platt is NIBIB associate director for Scientific Diversity, Equity and Inclusion.


 

Show Notes

Jennifer Couch, Ph.D.  
Biophysics, Bioengineering, and Computational Sciences Branch 
NCI Division of Cancer Biology 
Manu Platt, Ph.D
Center for Biomedical Engineering Technology Acceleration (BETA Center) 
National Institute of Biomedical Imaging and Bioengineering (NBIB) 
Physical Sciences - Oncology Network (PS-ON)  
NIH Clinical Center 
NIH Peer Review 
NIH Intramural Research Program 
Forum to Advance Minorities in Engineering, Inc. (FAME Inc.)  

 Ad - NanCI by NCI mobile application 

 Your Turn Recommendations: 

NCI Cancer AI Conversations  
The Importance of Stupidity in Scientific Research by Martin A. Schwartz 
Do It Now by Steve Pavlina 
The Selfish Gene by Richard Dawkins 

Episode Transcript

Oliver Bogler
Hello, and welcome to Inside Cancer Careers, a podcast from the National Cancer Institute, where we explore all the different ways people fight cancer and hear their stories. I'm your host, Oliver Bogler, from NCI's Center for Cancer Training. There's ample evidence in the history of science that connecting across fields can stimulate innovation and produce advances. One fruitful connection has been between biology and the physical sciences and engineering. And today we are talking to two leaders at NIH involved in this work.

Listen through to the end of the show to hear our guests make some interesting recommendations and where we invite you to take your turn. 

With us is Dr. Jennifer Couch, Chief of the Biophysics, Bioengineering, and Computational Sciences Branch in the Division of Cancer Biology at NCI. Welcome.

Jennifer Couch
Hi Oliver, thanks for inviting me.

Oliver Bogler
I'd also like to welcome Dr. Manu Platt, Director of the Biomedical Engineering Technology Acceleration or BETA Center at the National Institute of Biomedical Imaging and Bioengineering. Welcome.

Manu Platt
Great to be here with you.

Oliver Bogler
Let me start with the question of why and how different disciplines in STEMM can be brought together to accelerate progress. Jennifer, what are the strategies and goals of your branch and how do you accomplish them?

Jennifer Couch 
Well, I think, you know, one of the key things about cancer is that it's complicated, it's multi -scale, it's impacted in many different ways and it has impacts on the body at many different levels. And so for that reason, I think cancer researchers are often adopters of new technologies and collaborate broadly. And we've seen over the past, you know, many decades that bringing physical sciences approaches and tools and  thinking into the cancer research space can really enhance the way that we address and develop ways to understand the basic mechanisms that underlie cancer initiation and progression and the way that it responds to therapies.

Oliver Bogler
So one of the programs in your branch is called the Physical Sciences Oncology Network, or PSON, I think people call it. Tell us about that. 

Jennifer Couch
Yup.

Oliver Bogler
What does it do?

Jennifer Couch
So the Physical Sciences and Oncology Network has been around for about 15 years now, and it brings together explicitly partnerships between physical scientists, people with physical sciences expertise, and cancer research to address a broad range of cancer research questions, challenging things like spatial temporal dynamics and multi -scale effects of cancer, thinking about it through a physical sciences lens. And so all of the projects are collaborations between cancer researchers and people with these other expertise areas. 

Oliver Bogler
Have you got some examples for us of what kind of physical sciences are brought together with what kinds of biology to try and work together on the cancer problem?

Jennifer Couch
Sure. So, we know a lot about the way that cancer develops and, and progresses at the molecular level. But one of the things that's been a real challenge is understanding the kind of mechanical forces involved in the way that cancer both initiates and progresses throughout the body and, um, when it metastasizes and whether or not those metastases survive in the new environment. And a lot of that has to do with the interplay between mechanical forces and molecular signaling. And so physical sciences have been key to both mathematically and computational and modeling those processes, but also developing the tools that we need to actually measure things like stiffness and fluid flow and adhesion strength and under different conditions, really designing the systems that we need to test out those hypotheses.

Oliver Bogler
So the scientists you're bringing together probably have somewhat different languages, scientific languages, I mean. They have maybe slightly different mental models of how things work, right? I mean, I grew up in a very reductionist and deterministic age of biology that is slowly fading away into, you know, to be replaced by a more systems level and chaotic view of how it works. How does that manifest itself in the work that these different groups of scientists do together?

Jennifer Couch
Yeah, you know, collaboration is really the key. And I think you said something critical here, which is that we're moving away in cancer biology, I think, from that reductionist view into thinking about a more integrated systems kind of approach. Again, this multi-scale phenomenon, the way that different scales impact emergent properties, all of those things. And when people trained in the physical sciences and engineering come together with cancer researchers, the way that they speak about a problem is often different in the way that they think about approaching it and the timeline, right? So for example, biology can be expensive. Doing experiments isn't trivial to do over and over again in the way that perhaps a physicist or a statistician might want. And so often they have to spend some time sort of understanding each other's, not just language and jargon, but approach to answering a question. But when they do that, when they walk… when they go through those, that difficult, conversation with each other they can really approach a problem in a way that they can't do separately.

Oliver Bogler
And just for the sake of our audience, Jennifer, your branch is what we call extramural, right? So it works primarily by funding research that goes on outside the NCI, outside the NIH, across the country, right?

Jennifer Couch
Yeah, and in fact entirely. So we support fundamental technology development and resource development that develops the tools and the approaches and the methods that cancer researchers will then adopt and use to answer research questions. And that's done almost entirely through extramural research grants through a variety of different mechanisms. The physical sciences program that you mentioned is one critical program, but we get a lot of our projects through what we call investigator-initiated research. That's just the standard way that NIH solicits and supports research.

Oliver Bogler
That's when a research team out in the community has a good idea and they put in a grant just of their own accord to compete for funding, right?

Jennifer Couch
Yeah, and I would say, you know, for teams like this that where physical scientists and biologists might be coming together, that's particularly challenging to sort of think about how peer review will handle those projects and how to think about sort of selling it, if you will, right, to a group of your peers that might be a combined group of physicists and biologists. And so talking to one of us in my branch or across the NIH is always a good idea ahead of time, just to get a sense of how peer review might react to a different project and of a different scope and that sort of thing, or whether we might have a specific funding opportunity that suits the project that they're considering.

Oliver Bogler
Dr. Platt, Manu, you're leading a new initiative at the NIBIB, which has a role across the NIH, the BETA Center. What is that all about? Please tell us.

Manu Platt
Great question. No, so we are an NIH-wide center. We're housed in NIBIB. And one thing that's great about my institute is we are disease agnostic, right? We help develop technology tools that can be used to cause health medicine and even basic research. So in that way, that's what allows us to reach out to investigators all across the NIH. And I'm in the Intramural Research Program. I have a research lab here that I moved here last year, about a year ago now.

And so what we are doing is first finding the engineers and biomedical engineers that are in all of the other institutes because they're out there helping to bring them together to build communities, but also so that we can share the tools that we are using, the principles that we're applying so that bring in other clinicians and basic science researchers into kind of lowering those barriers so they can use the tools as well.

Oliver Bogler
So you mentioned that you're in the intramural program. That is the program that lives within the NIH. Each of our institutes and centers, or the majority of them, have their own research teams. Some people say that the kind of research that the intramural program does has some distinctions from what is more common extramurally because of the way it's funded. Sometimes people say it's more long-term, some projects are more higher risk. Is that your experience?

Manu Platt
So I've been here one year, so I can't speak on the long-term piece. But a big draw for me to come to the NIH from an academic lab was the idea that we could do more higher risk research without having to get it approved through the review committee that I you just mentioned with Jennifer. Because big ideas, I study disease that cut across lots of methods and organ systems. And to be able to then be able to test those diseases here is quite fantastic.

What I also think is the other big drawback for all the people in the outside world to think about is the Clinical Center here. You know, it's stocked with clinicians that are willing and eager to work on the cutting edge. And so they're willing to look at the rare diseases or the rare complications and talk to those of us on the research side who also don't have answers. I think that puts it in a really unique or a rarefied air to ask some really difficult questions.

Oliver Bogler
So the BETA center will be assembling teams. I understand that correctly?

Manu Platt
We're letting groups self-assemble and self-organize. We are bringing people together so they can hear what are the latest, greatest that's happening, what do we have access to on campus that people may not have been aware about that's in another institute. And so through that way, we're building teams across research institutes that then can push in different directions. Or bring more people into pushing in the same direction, but you bring your clinical buzz, you bring your clinical samples, or you bring your particular molecule of interest that we can help you probe in the physical ways, mechanical ways, and optical ways that may not be appreciated.

Oliver Bogler
So you're both kind of in the business of forming these transdisciplinary teams. And I wonder, what are the secret ingredients? What's the recipe that you use, Manu, to bring those teams together and have them work together effectively?

Manu Platt
Well, this is a simple thing that's true about human nature. It works at NIH just like it works in the extramural world. Food. Right? You can have people come together around food. But also, I think we are all nerds, right? I think once you are in higher science and you're pursuing a research career, the nerd part of you cannot be denied. And so when you are showing people there are new things that are happening in science that you may not have heard about, people become interested. 

And also, one of our characters also, we want to lower barriers of resistance for you to come along and try something new to kind of, again, de-risk it. Hey, you read something in that paper that had this amazing engineering technology that you don't know anybody around you that does. Well, come and talk to us. We may know people that do it on campus or with some of the shared resources here, they may be able to help build it so that you and your lab can now bring this technology back home. Again, opening up new doors and then tell all your friends about, oh, I'm doing this new thing. You should go and check them out. They're really able to work with you and be helpful and they were actually right next door all this time.

Oliver Bogler
Yeah, I think that's a common thing, right? The people you don't know are not far away physically. They're just not in your daily routine. And so it's hard to do that. Jennifer, any insights from your side? What's the secret sauce?

Jennifer Couch
Yeah, I think that is the secret sauce, that we're all curious people. And, you know, the real secret is sort of patience and an ability to be willing to admit that there's things that you don't know and to listen to other people's description of those from a very different perspective and kind of struggle through that initial conversation. That struggle yields real rewards in the end. 

And I would say sometimes those people are right next door and sometimes they aren't. And so we have in the past developed some programs that we call things like innovations labs or ideas labs that specifically bring together people from very, very different fields to form those kinds of collaborations to start to build out their networks. It's another thing that we do with our junior investigators meetings is try and sort of create those larger networks for people. Cause I think it can be difficult to step into a wonderful multidisciplinary space when you don't know where you're stepping.

Manu Platt
I’ve done one of those innovations labs and they are fantastic. So I just want to put in a plug if anyone gets an invite or sees an advertisement for one of those NCI innovation labs. I learned a lot in the one I was participating in and I hope that I also gave a lot to it as well. It was fantastic experience.

Oliver Bogler
That's a great tip also for our listeners. Manu, so you just mentioned you have been here almost a year. The Center is a year old. What are some of the early goals that you pursued and what are some of the things you feel you've already accomplished?

Manu Platt
Oh yeah, so it's been a great year, a lot of doing new things, but a big goal. The biggest one is getting a group of people. So far we have over 85 investigators across 16 different institutes and centers here at NIH that are affiliated with the BETA Center and have become regular attendees of, we have these research meet and greets where people give rapid fires to talk about what they do. And so that's been huge. 

And we're also now funding some summer students through the BETA Center and NIBIB that will work again in other institutes and labs here, because as bioengineers, we're still bringing in people from other disciplines to do bioengineering work because we are, again, as a field, are multidisciplinary. And so that openness that I've seen and the willingness to participate and be involved has been really exciting and refreshing. And so that's been a big win for this first season. 

Again, the other part is learning the administrative rules and regs here at NIH. And that there are ways that you can still cross institutes and that can flow smoothly. And then ways that are not so smooth, but that we are able to actually get lower those barriers to make it easier for people to come together.

Oliver Bogler
You mentioned outreach and workforce development. That's another component of the BETA center, right? And of course of NIH overall. So tell me, what are your goals in that domain?

Manu Platt
Right. So great opportunity here. We're federally funded, U.S. government, which is fantastic. And for those that don't know, I'm actually, I'm African-American. And so as an African-American professor in the university world, about 2 % of professors were African-American in science and engineering. At NIH, it's a little lower. I didn't know it would go lower, but it is for the, at the investigator level. And so there's room for improvement in growth. 

I'm trying to help again, break down the barriers and myths. I think a lot of investigators in the extramural world aren't aware of the rich opportunity that are available in the intramural campus, right? So helping to bring in postdocs who may be done an engineering PhD out in the world, you should come to this campus and actually see how close you can interface with clinicians because maybe you didn't think that's what a federal lab resource is able to do, but we are.

So again, in my work about outreach, it's about changing people's perceptions of what's happening here and let you come to campus, but also helping investigators on campus recruit from the outside world to find the type of talent that they want. 

And we all know this, the most creative solutions come from the most diverse teams. And so really helping people to access people from different backgrounds, research disciplines, and so they can see that fruit kind of blossom here.

Oliver Bogler
Great, thanks very much. Okay, let's take a quick break and when we come back, we'll talk to our guests about their own career paths and what wisdom they have picked up along the way. 

[music starts]

Oliver Bogler
PubMed lists over 270,000 cancer papers published in 2022 – that is a staggering 750 papers every day. It’s great that cancer research is such an active field, but it makes finding the pubs that are critical to your work a challenge. What if you had an AI that paid attention to the papers you read and suggested others as they appear in PubMed? That is exactly what the NCI is building with an app called NanCI. With me to discuss NanCI are two members of the team that are creating NanCI.

Duncan Anderson 
NanCI  is an app for cancer scientists and it helps them to discover the research in new ways and connect with each other and build their personal networks and share information and get to know each other. We've just launched the ability to actually chat with a piece of research, so you can actually have a conversation and ask questions about a research paper itself.

JD Wuarin
Instead of having to read the whole paper yourself, you can now simply ask questions and NanCI will answer those questions. One of the cool features we've also added is that it will read the abstract and figure out what questions you might want to ask the paper.

Duncan Anderson
We're using artificial intelligence within NanCI to help to make information easier to find and easier to understand and easier to interact with. The only information we're using is the scientific data. So the research paper, for example, we don't allow our AI to go off and answer random questions that might introduce all sorts of concerns.

JD Wuarin
And so the idea will be that eventually with NanCI straight from your pocket, you'll not only be able to chat with papers and understand what papers are about, but also based on your interest, it will suggest to you what you might want to investigate, maybe which gene mutation you might want to look at, which new disease might be related to what you're doing. And that's gonna be interesting, I think. 

Duncan Anderson
If you start working in a field which you don't have a lot of experience in, it can be a bit daunting. There's a lot of information to read. We have this idea that you could tell NanCI what the field is and NanCI would go off and present you the key influential papers in that space so you can very quickly get your head around what this new field is. 

So today, NanCI can be used by cancer researchers in the USA. So it's available from the Apple App Store for the iPhone. And there's a restriction on the downloads, which means that you need to have an email address associated with a cancer research institution.

[music ends]

Oliver Bogler
And we're back. Let me start with you, Dr. Platt. Manu, what first got you interested in science and engineering?

Manu Platt
So funny story, so my mother, she retired in 2012, but my mother is a health and physical education teacher. Okay, so she is a very fit woman and was always talking about your body and do this for your body and drink the water in your body. And so that was nice to hear her say, but then how does it actually work used to really always interest me. So that's where the bio side came from. 

Then for the engineering, my dad was in the Air Force, so he did 20 years in the Air Force, moved around a bit. But he retired in Dover, Delaware. And there in Dover, Delaware is Delaware State University, Delaware State College at the time, but it's a Historically Black College and University. And they had this program there, it was a Saturday academy for middle school students and then in high school, you could say on campus, called FAME, Forum to Advance Minorities in Engineering. And so we would go every other Saturday and they'd do math and science and talk about engineering. And I was like, I don't know what this is, but it's about thinking about how things work. And I love the health and phys ed that I was getting from my mom and those interests together were the tools that then said you can use engineering to understand how our bodies are working. 

Because again, physical education teaches a lot of impact, movement, motion, and how your bodies change when you do these things. And that was the spark that kind of, when I heard about biomedical, I'll tell you this story, one more story. Also in my textbook, in my AP biology class, the textbooks used to have those career highlights in them, remember? It's quite useful. And one day there was a career highlight on medical technologists. And I was like, whoa, medicine and technology, these are the things that I'm really interested in. And my friend sitting next to me said, you know, that looks like something my aunt does. She's like a biomedical engineer or something. And I said, that's it. Because I was doing FAME, I love biology. That sounds amazing. And I've been on the path ever since.


Oliver Bogler
That's fantastic. Jennifer, how about you?

Jennifer Couch
Well, I'm a fair bit older than Manu. So I stumbled into this world, you know, down a bit of a rocky path. So I came to the world of cancer biology via molecular evolution and sort of the early years of genomics and the genome project. And so that idea of kind of doing things at a large scale and thinking about things as a system and thinking about cancer as an evolving system or system of systems was really appealing to me intellectually. And then coming to the extramural space where I can work with smart people who are putting their brains towards solving real cancer research questions just felt important. And so that's what drew me to this space. I like to think about the bigger picture and I'm really keen to help the extramural research community get us there.

Oliver Bogler
That's great. I still want to know what made you want to become a scientist in the first place.

Jennifer Couch
Oh, gosh, I don't know. I think, all right, I'm gonna go back to something else Manu said, he said curious nerd. And I think that is what I have always been. You know, I come from a long range of curious nerds. My grandmother was a woman who was deeply curious and knew everything about every weed and every plant out in the forest and that sort of thing. And she had a sixth grade education, but she was one of the smartest people I ever knew. And her son, my father, was sort of also that way. And so I just sort of grew up in that environment where we're allowed to be curious about everything.

Oliver Bogler
So Manu, let's pick it up for you. So you heard about this idea of biomedical engineering when you were in high school or thereabouts. So where did you go next?

Manu Platt
Right, so applying to colleges, leaving Dover Delaware and I have this, I'll try to tell the shorter version, but I have this award from my high school. It was the RPI Medal, Rensselaer Polytechnic Institute medal for the top science student of your junior year. And so senior year, they had us come up to the RPI to get this medal and award. And it's in Troy, New York, which they told us how cold it would get.

But they began to talk about undergraduate research and that that's what they wanted undergraduates to do. And I was like, oh my goodness, we could actually start like touching and doing things with human stuff. But then in their program book, but they actually had these dual degree engineering program. And one of the schools they had a partnership with was Morehouse College, which is a Historically Black College all male in Atlanta, Georgia. And growing up when I did in the 80s, 90s, we all knew about Morehouse and heard about Morehouse and Spelman. And I was like, oh my goodness, I could go both.

So then when I finally toured Morehouse in Atlanta, spring break of my senior year, I mean, I had to go just to be on that campus with all Black men. And again, growing up a child in the nineties, there were different impressions of Black men in the nineties. And it was just very reinforcing to be there where what that allowed was being a Black man, like wasn't what your daily experience was. You could find all these other things that you are because everybody here is a Black man. And there were scientists and engineers and biologists. 

That was my professor who had been out in the world and making sure we got the science part. So then what happens, I got a NASA scholarship when I was at Morehouse and I was on this dual degree engineering path thinking I would go to RPI, went to do these NASA internships as well with the scholarship. And so seeing how mechanical forces influence biology, when astronauts go to space, they have all of these other physiological complications, was really just mind blowing because in biology, I think we learn what happens, but I think the engineering and the mechanical aspects tell us why they happen. And that our biology obey all the same physical principles. It was amazing to me. So I was all in and that NASA experiences, several of them, maybe decided when to get a PhD in biomedical engineering so that I could stay on this research path. Medicine was not for me and I have been happy and excited and all the things the nerds ever said.

Oliver Bogler 
So you did your PhD at Georgia Tech, right? And then you did a postdoc at MIT in biological engineering as well. And then you went to the Georgia Institute of Technology and Emory for your faculty work.

Manu Platt
I did. Yes. So I was the hometown boy right now. Once I moved to Atlanta, I couldn't leave. And so right in my PhD, I worked on mechanical forces more in a cardiovascular space, but at the root were these enzymes, these proteases that remodel tissue. And I still study them today. Then during my postdoc, I switched over to orthopedic tissue engineering, biomaterials and systems biology. And I was in a lab where we're applying systems biology to cancer and other spaces. And again, as Jennifer mentioned, cancer is, it's such a complicated problem. And when you first start thinking about cancer, it’s one cell that goes wrong but it's so much more than that. And using mathematical and computational biology to help understand things that we can't directly test for, at least currently, also added another set of tools where computational biology and math with biology is another way of opening up doors to help solve these problems. 

And again, those things don't mix, I think earlier in your educational career for some reason, maybe things that we could change. But when you start hearing about them, I was resistant and I fought a few of my professors at first until the idea that we could save one experiment by using math to predict what the biology would do. Okay, now you've made it practical. Now let's talk about it. And so I went to do a postdoc to really get computational modeling and system biology experience so that when I started my own group back at Georgia Tech, I could be all of these things that make me this unique person.

And the proteases that I started with cardiovascular, they are highly active in cancer and they play a lot of functional roles, but also they become biomarkers for when thinking about diagnosis, prognosis, and so we push in those directions.

Oliver Bogler
So I want to pick up on something you just said, which intrigues me. And also because the two of you, you took very different paths into your current roles, right? Manu, you kind of went what might be now described as a well-established bioengineering pathway, right? That sort of, for you, bio and engineering was almost always there. And for Jennifer, it sort of came a little bit more circuitously. So are we preparing the next generation of cancer biologists? Because I only care about cancer. No, a biomedical scientist, let's be more general here. Are we preparing them well or should they be exposed to more of a mixture? Like you said, Manu, that you don't always get that mixture early on.

Manu Platt
I think yes. My undergrad degree was straight biology and then I switched to biomedical engineering. And I enjoyed having a hardcore biology education that then when I got to grad school hearing the engineering ways that apply because I think it's… oh, you're going to get me in trouble with my engineering colleagues, you're going to get me in trouble. I think what I have heard and I think there's a general stereotype, is that engineering is hard, biology is easy, right? You just have to learn things in biology. But engineering has math and it's hard. But I think that's not true. I think there, what engineering has done, it relies on physics and chemistry and math, but they've established laws and principles and rules that we know work, right? Biology, we don't have equations for everything that happens. And as cells are living, they change. With cancer, not every cell changes the same, even within the same tumor.

And so the rules aren't so established. But I think what biologists are trained as we raise, you know, we learn about evolution, ecology, how things work in different ways. If you're not raised in that, I've met engineers who say, if I tell a cell to do this, it's going to do this. And because I told it to. And you're like, that cell… 

Oliver Bogler
Good luck.

Manu Platt
Right. It might start doing it and then it's going to try to get back to homeostasis and do 15 other things that you can't even measure to get to where it needs to be and there's your disease and the complications. So that's why I think let the experts teach it and then have a few integrative classes that help cross those bridges. And there can be a strength in having the person forge from their own views how both worlds kind of can make. I think that was my graduate education, which biologists were taught alongside traditional engineers and then we as students collaborated with each other to help each other understand what was going on. And I think that was stronger than a fully integrative approach throughout the entire education. But that's me, I'm one person. Clearly I love my program. I went back and started my lab there. So that's my long answer to that question.

Oliver Bogler
Thank you. Jennifer, what's your perspective on that? Are we teaching people in undergraduate even the right way?

Jennifer Couch
You know, I suspect we are teaching them in a variety of different ways. And I think Manu and I both sort of show that you can come at this problem in a very different, through a very different route. You know, the time at which I was taught biology and things, I think they were even more separate. And we were taught things in a distinct order and they didn't sort of necessarily integrate. 

I agree with you Manu that sometimes when people teach things like as is, completely integrated, people lose the beauty of individual fields and the views that you can take. As you said, for example, sometimes when the biologists collaborate with engineers and physicists and things that mathematicians, right, the first year or so is highly frustrating because those mathematicians want, they want the data they want. And the biologist says, well, you know, I can't get that. We can't measure that. I can't do that. It can't happen. Or I'll measure it, but you know, you're not going to believe the data that comes out of it because biology changes and things happen. And those that that struggle is, is difficult. 

But I think maybe going back even earlier in education, I would love us to educate people much earlier that they can pursue a variety of different careers and that biomedical research isn't all about becoming a medical doctor and understanding how to deal with patients. There is a lot that you can contribute if you are very analytical person, if you're a very logical person, if you're the kind of person that builds teams really well, or you're the kind of person that is the translator between different fields, all those people are really critical in the biomedical research enterprise across the whole spectrum from basic biology to translational research and population science. And I just think the more different voices and lived experiences and perspectives that we have coming at difficult problems like cancer, the the more progress we'll make.

Oliver Bogler
So thank you. That's a perfect segue into my last question, which is what advice do you have for people listening who might be, you know, they might be in high school or even or undergraduates or even in graduate school, they might already be on a science path. But what advice do you have for them in terms of your both of your experiences of sort of combining different areas to bring to bring new ideas together? Jennifer, what would you say?

Jennifer Couch 
I think, you know, it is difficult and just giving yourself the patience and, you know, the fortitude to sort of stick with it and take criticism for what it is. It is just suggestions on making your work better and take advice for what it is and try and build out that network of peers that will support you and work with you and help you build your work forward and will give you critical advice when you need it.

Oliver Bogler
Manu, what do you say to the young scientists in your team?

Manu Platt
I love talking to young scientists. I love the Tim Cook line, right, about bring your whole self to work. And so when I talk to young scientists, I want to remind them you can be exactly who you are and be a scientist. You can look any kind of way, come from whatever kind of background and be a scientist. You do not have to look like what you've seen in textbooks or TV or whatever how a scientist or an engineer looks.

Because I think that can make a lot of people think, I would never want to be that, quote, lame, so I don't want to do that. But that's just a stereotype. But I think that's important because every experience that you have, even while you're even at, before you start learning about science or before you're even when you're not in classes, help you view the world and questions and problems in a unique way that the person next to you will not view it, even if you all took the same classes forever. 

And your ideas matter. Right? And from your perspective, your ideas matter. And so I go back to Jennifer about building good teams. When you're on these teams and you look different than everyone in the room, put your idea out there on the table because I promise you they have not thought of it. And that idea that you have could be what saves the day. Right? So that's why we need people from all these backgrounds and who look all kinds of ways to come to that table and you belong.

Oliver Bogler
Thank you both. That's fantastic advice and really appreciate you spending some time with us.

[music]

Oliver Bogler
Now it's time for a segment we call Your Turn because it's a chance for our listeners to send in a recommendation that they would like to share. If you're listening, then you're invited to take your turn. Send us a tip for a book, a video, a podcast or a talk that you found inspirational, amusing or interesting. You can send these to us at nciicc@nih.gov. If you record a voice memo and send it along, we may just play it in an upcoming episode.

Now I'd like to invite our guests to take their turn. Let's start with you, Jennifer.

Jennifer Couch
Well, I know one of the things that people are really excited about and really worried about and really struggling with is artificial intelligence. And so the National Cancer Institute is running a series of what we're calling AI Conversations, right, designed to get at topics in AI where there's maybe there's not consensus yet. There's sort of emerging discussions to be had. And so those occur bi-monthly and I can put a link wherever it is that I put links.

Oliver Bogler
We'll put the link in the show notes for you. 

Jennifer Couch
Thank you.

Oliver Bogler
That's a great recommendation. I'm personally very excited about AI, but also anxious. So I do try to listen into those conversations. Manu, what kind of recommendation do you have for us?

Manu Platt
Yes, I have two quick reads. One kind of goes with one of the things that the topic Jennifer and I have been talking about. And it's written by Martin A. Schwartz. But it's called The Importance of Stupidity in Scientific Research. And if you meet Martin, he's a highly accomplished but also very cerebral scientist. And he stresses here that the more comfortable we become with being stupid, the deeper we will wade into the unknown and more likely we are to make big discoveries. I think young scientists get afraid of being wrong, but that's not where you want to be. You don't want to be where everything I do is right because you're not at the edge of knowledge. So check that out. 

But the other one that's more personal is it's a time management piece that, you know, when I was a first, second year professor, time was just crazy. And a lot of people I know struggled with time management, particularly in these times where you can zoom and triple book yourself. But it's this piece that I reread and I share with my trainees. It's called Do It Now by this gentleman, Steve Pavlina. It's a 13-page read, so if you don't have time to read it, the time management is really screwed up. But it really talks about this person. He graduated from college in three semesters. Not three years, semesters. But he talked about all the different ways he had to manage his time in order to do that. And it turns the way you think about time management kind of on its head and challenges some of the ways that we normally function. And maybe those things are actually not the best use for us. So I challenge people to read it, run the experiments yourself and see what works. I have to reread it myself about every two months because I slip in the old habits. But there's some other things that have stuck good and really helped me out in the long run. So do it now. Steve Pavlina.

Oliver Bogler
Yeah, I'm going to go check that out. It's maybe it's not too late for me.

Manu Platt
Never too late.

Oliver Bogler
Great, thanks. I'd like to make a recommendation as well. It's for a book from a while ago. It's called The Selfish Gene by Richard Dawkins. It was first published in 1976, and I came across it as a schoolboy in the 1980s. And it's a significant part of why I wanted to become a biologist. He uses very strong anthropomorphic concepts and looks at biology and evolution at the level of the gene, exploring the idea that an organism is just a way for a gene to get itself into the next generation with as many copies as possible. It actually makes for fascinating reading. And it was criticized at times for being very anthropomorphic, for ascribing these human motivations to a gene. However, he acknowledges that that is just a tool. And my interest in the book has recently been rekindled by reading the works of Dr. Itai Yanai and Dr. Martin Lercher whose exploration of night science was in part inspired by the works of Prof Dawkins. If you haven't read The Selfish Gene, it's a classic. I recommended it, if only because of its importance in science and culture and the history of biology and evolution. And, spoiler alert, the last chapter talks about memes and how they propagate. So he saw that long before we had social media. Take a look.
 
That’s all we have time for on today’s episode of Inside Cancer Careers! Thank you for joining us and thank you to our guests.

We want to hear from you – your stories, your ideas and your feedback are welcome. And you are invited to take your turn and make a recommendation to share with our listeners. You can reach us at NCIICC@nih.gov.

Inside Cancer Careers is a collaboration between NCI’s Office of Communications and Public Liaison and the Center for Cancer Training. It is produced by Angela Jones and Astrid Masfar.

Join us every first and third Thursday of the month wherever you listen – subscribe so you won’t miss an episode.

If you have questions about cancer or comments about this podcast, you can email us at NCIinfo@nih.gov or call us at 800-422-6237. And please be sure to mention Inside Cancer Careers in your query.

We are a production of the U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute. Thanks for listening.

If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Season 2 – Episode 6: Engineering a Cancer Career was originally published by the National Cancer Institute.”

Email