Skip to main content

Childhood Gastrointestinal Carcinoid Tumors Treatment (PDQ®)–Health Professional Version

Gastrointestinal Carcinoid Tumors of the Appendix

Clinical Presentation

A single-institution retrospective review identified 45 cases of carcinoid tumors in children and adolescents between 2003 and 2016.[1][Level of evidence C2] The most common primary site was the appendix (36 of 45 cases). No recurrences were observed among the patients with appendiceal primary tumors treated with appendectomy alone, which supports resection of the appendix without hemicolectomy as the procedure of choice.

Most carcinoid tumors of the appendix are discovered incidentally at the time of appendectomy, and are small, low-grade, localized tumors.[2-4]

Treatment of Gastrointestinal Carcinoid Tumors of the Appendix

Treatment options for carcinoid tumors of the appendix include the following:

  1. Appendectomy.

In adults, it has been accepted practice to remove the entire right colon in patients with large carcinoid tumors of the appendix (>2 cm in diameter) or with tumors that have spread to the lymph nodes.[5-8]

Study results suggest that appendectomy alone is sufficient treatment for childhood appendiceal carcinoid tumors regardless of size, position, histology, or nodal or mesenteric involvement and that right hemicolectomy is unnecessary in children. Routine follow-up imaging and biologic studies were not beneficial.[5,8-10]

Evidence (appendectomy alone):

  1. The Italian Rare Tumors in Pediatric Age project performed a prospective registry study that evaluated 113 patients with appendiceal carcinoid tumors.[9][Level of evidence C1] Primary re-excision was not recommended for completely excised tumors smaller than 2 cm except for microscopic/macroscopic residual tumor on the margins of the appendix, in which case cecum resection and pericecal node biopsy was recommended. Decisions about tumors larger than 2 cm were made at the discretion of the primary physicians. However, physicians were discouraged from performing right hemicolectomy unless margins were positive. Of the 113 study participants, 108 had tumors smaller than 2 cm. Thirty-five patients had extension of tumor beyond the appendiceal wall. Five tumors invaded the serosa, and 28 tumors invaded the periappendiceal fat. Margins were clear in 111 of 113 patients.
    • At 41 months of follow-up, 113 of 113 patients were alive.
    • The five patients with tumors larger than 2 cm did well.
    • One patient had resection of the cecum; no residual tumor was found.
    • One patient had a right hemicolectomy (tumor was <2 cm with clear margins, but an octreotide scan was possibly positive; no tumor was found).

    The study concluded that appendectomy alone should be considered curative for most cases of appendiceal carcinoid tumors. The procedure of choice is a resection of the appendix without hemicolectomy.

  2. A French multicenter study of children younger than 18 years with carcinoid tumors of the appendix was carried out by surveying pediatric surgeons from 1988 to 2012. A total of 114 patients were identified. Risk factors for secondary right hemicolectomy were extension into the mesoappendix, positive margins, size larger than 2 cm, and high proliferative index. Eighteen patients met the above criteria and were observed.[10]
    • All patients were alive and disease free at follow-up.
    • In addition, follow-up radiological studies and biological tests were not found to be helpful.

    The investigator's recommendation was that appendectomy alone is sufficient treatment for carcinoid tumors of the appendix.

  3. A systematic review and meta-analysis of 38 studies of appendiceal carcinoid identified 958 cases with a mean age at presentation of 11.6 years. Tumor size was 2 cm or smaller in 85% of the cases. Of the 24 papers that reported the status of the margin of resection, 97% had negative margins. Nodal involvement was reported in ten series and was present in 1.4% of cases, with higher rates seen in patients whose tumors were larger than 2 cm (35%). Vascular involvement was seen in 11% of 510 patients, and invasion of the mesoappendix or periappendiceal fat was reported in 29% of 910 patients.[8]
    • According to the European and American Neuroendocrine Tumor Societies, 189 patients met the criteria for a secondary procedure after initial appendectomy but only 69 patients underwent a secondary procedure (n = 43, hemicolectomy; n = 2, ileocecectomy; n = 1, cecectomy; n = 2, ileocolectomy; n = 21, not specified).
    • Of the 120 patients who did not have a secondary procedure, 91 patients had tumors extending to the mesoappendix, 5 patients had vascular invasion, 4 patients had positive margins, 12 patients had tumors 2 cm or larger, 1 patient had a high proliferative index, and 7 patients had positive lymph nodes. No recurrence was reported in patients who had a secondary procedure or those who were observed. Preoperative and postoperative imaging was not helpful in managing the patients.
  1. Degnan AJ, Tocchio S, Kurtom W, et al.: Pediatric neuroendocrine carcinoid tumors: Management, pathology, and imaging findings in a pediatric referral center. Pediatr Blood Cancer 64 (9): , 2017. [PUBMED Abstract]
  2. Pelizzo G, La Riccia A, Bouvier R, et al.: Carcinoid tumors of the appendix in children. Pediatr Surg Int 17 (5-6): 399-402, 2001. [PUBMED Abstract]
  3. Hatzipantelis E, Panagopoulou P, Sidi-Fragandrea V, et al.: Carcinoid tumors of the appendix in children: experience from a tertiary center in northern Greece. J Pediatr Gastroenterol Nutr 51 (5): 622-5, 2010. [PUBMED Abstract]
  4. Henderson L, Fehily C, Folaranmi S, et al.: Management and outcome of neuroendocrine tumours of the appendix-a two centre UK experience. J Pediatr Surg 49 (10): 1513-7, 2014. [PUBMED Abstract]
  5. Dall'Igna P, Ferrari A, Luzzatto C, et al.: Carcinoid tumor of the appendix in childhood: the experience of two Italian institutions. J Pediatr Gastroenterol Nutr 40 (2): 216-9, 2005. [PUBMED Abstract]
  6. Wu H, Chintagumpala M, Hicks J, et al.: Neuroendocrine Tumor of the Appendix in Children. J Pediatr Hematol Oncol 39 (2): 97-102, 2017. [PUBMED Abstract]
  7. Boxberger N, Redlich A, Böger C, et al.: Neuroendocrine tumors of the appendix in children and adolescents. Pediatr Blood Cancer 60 (1): 65-70, 2013. [PUBMED Abstract]
  8. Njere I, Smith LL, Thurairasa D, et al.: Systematic review and meta-analysis of appendiceal carcinoid tumors in children. Pediatr Blood Cancer 65 (8): e27069, 2018. [PUBMED Abstract]
  9. Virgone C, Cecchetto G, Alaggio R, et al.: Appendiceal neuroendocrine tumours in childhood: Italian TREP project. J Pediatr Gastroenterol Nutr 58 (3): 333-8, 2014. [PUBMED Abstract]
  10. de Lambert G, Lardy H, Martelli H, et al.: Surgical Management of Neuroendocrine Tumors of the Appendix in Children and Adolescents: A Retrospective French Multicenter Study of 114 Cases. Pediatr Blood Cancer 63 (4): 598-603, 2016. [PUBMED Abstract]

Special Considerations for the Treatment of Children With Cancer

Cancer in children and adolescents is rare, although the overall incidence has been slowly increasing since 1975.[1] Referral to medical centers with multidisciplinary teams of cancer specialists experienced in treating cancers that occur in childhood and adolescence should be considered for children and adolescents with cancer. This multidisciplinary team approach incorporates the skills of the following health care professionals and others to ensure that children receive treatment, supportive care, and rehabilitation that will achieve optimal survival and quality of life:

  • Primary care physicians.
  • Pediatric surgeons.
  • Radiation oncologists.
  • Pediatric medical oncologists/hematologists.
  • Rehabilitation specialists.
  • Pediatric nurse specialists.
  • Social workers.
  • Child-life professionals.
  • Psychologists.

(Refer to the PDQ Supportive and Palliative Care summaries for specific information about supportive care for children and adolescents with cancer.)

The American Academy of Pediatrics has outlined guidelines for pediatric cancer centers and their role in the treatment of pediatric patients with cancer.[2] At these pediatric cancer centers, clinical trials are available for most types of cancer that occur in children and adolescents, and the opportunity to participate is offered to most patients and their families. Clinical trials for children and adolescents diagnosed with cancer are generally designed to compare potentially better therapy with current standard therapy. Most of the progress made in identifying curative therapy for childhood cancers has been achieved through clinical trials. Information about ongoing clinical trials is available from the NCI website.

Dramatic improvements in survival have been achieved for children and adolescents with cancer. Between 1975 and 2010, childhood cancer mortality decreased by more than 50%.[3] Childhood and adolescent cancer survivors require close monitoring because side effects of cancer therapy may persist or develop months or years after treatment. (Refer to the PDQ summary on Late Effects of Treatment for Childhood Cancer for specific information about the incidence, type, and monitoring of late effects in childhood and adolescent cancer survivors.)

Childhood cancer is a rare disease, with about 15,000 cases diagnosed annually in the United States in individuals younger than 20 years.[4] The U.S. Rare Diseases Act of 2002 defines a rare disease as one that affects populations smaller than 200,000 people. Therefore, all pediatric cancers are considered rare.

The designation of a rare tumor is not uniform among pediatric and adult groups. In adults, rare cancers are defined as those with an annual incidence of fewer than six cases per 100,000 people. They account for up to 24% of all cancers diagnosed in the European Union and about 20% of all cancers diagnosed in the United States.[5,6] Also, the designation of a pediatric rare tumor is not uniform among international groups, as follows:

  • The Italian Tumori Rari in Eta Pediatrica group defines a pediatric rare tumor as one with an incidence of less than two cases per 1 million population per year and is not included in other clinical trials.[7]
  • The Children's Oncology Group has opted to define rare pediatric cancers as those listed in the International Classification of Childhood Cancer subgroup XI, which includes thyroid cancer, melanoma and nonmelanoma skin cancers, and multiple types of carcinomas (e.g., adrenocortical carcinoma, nasopharyngeal carcinoma, and most adult-type carcinomas such as breast cancer, colorectal cancer, etc.).[8] These diagnoses account for about 4% of cancers diagnosed in children aged 0 to 14 years, compared with about 20% of cancers diagnosed in adolescents aged 15 to 19 years.[9]

    Most cancers within subgroup XI are either melanomas or thyroid cancer, with other types accounting for only 1.3% of cancers in children aged 0 to 14 years and 5.3% of cancers in adolescents aged 15 to 19 years.

These rare cancers are extremely challenging to study because of the low number of patients with any individual diagnosis, the predominance of rare cancers in the adolescent population, and the lack of clinical trials for adolescents with rare cancers.

Information about these tumors may also be found in sources relevant to adults with cancer such as the PDQ summary on Gastrointestinal Carcinoid Tumors Treatment (Adult).

  1. Smith MA, Seibel NL, Altekruse SF, et al.: Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 28 (15): 2625-34, 2010. [PUBMED Abstract]
  2. American Academy of Pediatrics: Standards for pediatric cancer centers. Pediatrics 134 (2): 410-4, 2014. Also available online. Last accessed June 7, 2022.
  3. Smith MA, Altekruse SF, Adamson PC, et al.: Declining childhood and adolescent cancer mortality. Cancer 120 (16): 2497-506, 2014. [PUBMED Abstract]
  4. Ward E, DeSantis C, Robbins A, et al.: Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 64 (2): 83-103, 2014 Mar-Apr. [PUBMED Abstract]
  5. Gatta G, Capocaccia R, Botta L, et al.: Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet-a population-based study. Lancet Oncol 18 (8): 1022-1039, 2017. [PUBMED Abstract]
  6. DeSantis CE, Kramer JL, Jemal A: The burden of rare cancers in the United States. CA Cancer J Clin 67 (4): 261-272, 2017. [PUBMED Abstract]
  7. Ferrari A, Bisogno G, De Salvo GL, et al.: The challenge of very rare tumours in childhood: the Italian TREP project. Eur J Cancer 43 (4): 654-9, 2007. [PUBMED Abstract]
  8. Pappo AS, Krailo M, Chen Z, et al.: Infrequent tumor initiative of the Children's Oncology Group: initial lessons learned and their impact on future plans. J Clin Oncol 28 (33): 5011-6, 2010. [PUBMED Abstract]
  9. Howlader N, Noone AM, Krapcho M, et al., eds.: SEER Cancer Statistics Review, 1975-2012. National Cancer Institute, 2015. Also available online. Last accessed May 25, 2022.

Nonappendiceal Gastrointestinal Carcinoid Tumors

Clinical Presentation

A single-institution retrospective review identified 45 cases of carcinoid tumors in children and adolescents between 2003 and 2016.[1][Level of evidence C2] Extra-appendiceal primary tumors (n = 9) were associated with a higher risk of metastasis and recurrence.

Nonappendiceal carcinoid tumors in the abdomen can occur in the pancreas, stomach, and liver. The most common clinical presentation is an unknown primary site. Nonappendiceal carcinoid tumors are more likely to be larger, higher grade, or present with metastases.[2] Larger tumor size has been associated with a higher risk of recurrence.[1]

The carcinoid syndrome of excessive excretion of somatostatin is characterized by flushing, labile blood pressure, and metastatic spread of the tumor to the liver.[3] Symptoms may be lessened by giving somatostatin analogs, which are available in short-acting and long-acting forms.[4]

Clinical experience with nonappendiceal carcinoid tumors is reported almost entirely in adults. Histopathology is graded by mitotic rate, Ki-67 labeling index, and presence of necrosis into well-differentiated (low grade, G1), moderately differentiated (intermediate grade, G2) and poorly differentiated (high grade, G3) tumors.[5]

Treatment and Outcome of Nonappendiceal Gastrointestinal Carcinoid Tumors

Treatment options for resectable nonappendiceal carcinoid tumors include the following:

  1. Surgery.[6]

Treatment options for unresectable or multifocal nonappendiceal carcinoid tumors include the following:

  1. Embolization.[7]
  2. Somatostatin receptor 2 (SSTR2) ligands.[8,9]
  3. Peptide receptor radionuclide therapy.[10]
  4. Mammalian target of rapamycin (mTOR) inhibitors.[11]
  5. Tyrosine kinase inhibitors.[12]

SSTR2 ligands include octreotide, long-acting repeatable octreotide, and lanreotide. Octreotide is not practical for therapy because of its short half-life, requiring frequent repeated administration. Long-acting repeatable octreotide and lanreotide have been evaluated in prospective, randomized, placebo-controlled trials.[8,9] Patient age was not specified in the first trial, and eligibility was restricted to age 18 years and older in the second trial. Neither agent produced significant objective responses in measurable tumors. Both agents were associated with statistically significant increases in progression-free survival and time-to-progression, and both agents are recommended for the treatment of unresectable nonappendiceal carcinoid tumors in adults.

Conventional cytotoxic chemotherapy appears to be inactive.[2]

In one retrospective, single-institution study, the 5-year relapse-free survival rate of patients with nonappendiceal carcinoid tumors was 41%, and the overall survival rate was 66%.[2]

  1. Degnan AJ, Tocchio S, Kurtom W, et al.: Pediatric neuroendocrine carcinoid tumors: Management, pathology, and imaging findings in a pediatric referral center. Pediatr Blood Cancer 64 (9): , 2017. [PUBMED Abstract]
  2. Boston CH, Phan A, Munsell MF, et al.: A Comparison Between Appendiceal and Nonappendiceal Neuroendocrine Tumors in Children and Young Adults: A Single-institution Experience. J Pediatr Hematol Oncol 37 (6): 438-42, 2015. [PUBMED Abstract]
  3. Tormey WP, FitzGerald RJ: The clinical and laboratory correlates of an increased urinary 5-hydroxyindoleacetic acid. Postgrad Med J 71 (839): 542-5, 1995. [PUBMED Abstract]
  4. Delaunoit T, Rubin J, Neczyporenko F, et al.: Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine tumors. Mayo Clin Proc 80 (4): 502-6, 2005. [PUBMED Abstract]
  5. Enzler T, Fojo T: Long-acting somatostatin analogues in the treatment of unresectable/metastatic neuroendocrine tumors. Semin Oncol 44 (2): 141-156, 2017. [PUBMED Abstract]
  6. Ambe CM, Nguyen P, Centeno BA, et al.: Multimodality Management of "Borderline Resectable" Pancreatic Neuroendocrine Tumors: Report of a Single-Institution Experience. Cancer Control 24 (5): 1073274817729076, 2017 Oct-Dec. [PUBMED Abstract]
  7. Elf AK, Andersson M, Henrikson O, et al.: Radioembolization Versus Bland Embolization for Hepatic Metastases from Small Intestinal Neuroendocrine Tumors: Short-Term Results of a Randomized Clinical Trial. World J Surg 42 (2): 506-513, 2018. [PUBMED Abstract]
  8. Rinke A, Wittenberg M, Schade-Brittinger C, et al.: Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients with Metastatic Neuroendocrine Midgut Tumors (PROMID): Results of Long-Term Survival. Neuroendocrinology 104 (1): 26-32, 2017. [PUBMED Abstract]
  9. Caplin ME, Pavel M, Ćwikła JB, et al.: Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 371 (3): 224-33, 2014. [PUBMED Abstract]
  10. Brabander T, Teunissen JJ, Van Eijck CH, et al.: Peptide receptor radionuclide therapy of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab 30 (1): 103-14, 2016. [PUBMED Abstract]
  11. Gajate P, Martínez-Sáez O, Alonso-Gordoa T, et al.: Emerging use of everolimus in the treatment of neuroendocrine tumors. Cancer Manag Res 9: 215-224, 2017. [PUBMED Abstract]
  12. Liu IH, Kunz PL: Biologics in gastrointestinal and pancreatic neuroendocrine tumors. J Gastrointest Oncol 8 (3): 457-465, 2017. [PUBMED Abstract]

Metastatic Gastrointestinal Carcinoid Tumors

Treatment of metastatic carcinoid tumors of the large bowel, pancreas, or stomach becomes more complicated and requires treatment similar to that given for adult high-grade carcinoid tumors. (Refer to the PDQ summary on Gastrointestinal Carcinoid Tumors Treatment [Adult] for treatment options in patients with malignant carcinoid tumors.)

Treatment Options Under Clinical Evaluation for Childhood Gastrointestinal Carcinoid Tumors

Information about National Cancer Institute (NCI)–supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, refer to the website.

The following is an example of a national and/or institutional clinical trial that is currently being conducted:

  • APEC1621 (NCT03155620) (Pediatric MATCH: Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders): NCI-COG Pediatric Molecular Analysis for Therapeutic Choice (MATCH), referred to as Pediatric MATCH, will match targeted agents with specific molecular changes identified using a next-generation sequencing targeted assay of more than 4,000 different mutations across more than 160 genes in refractory and recurrent solid tumors. Children and adolescents aged 1 to 21 years are eligible for the trial.

    Tumor tissue from progressive or recurrent disease must be available for molecular characterization. Patients with tumors that have molecular variants addressed by treatment arms included in the trial will be offered treatment on Pediatric MATCH. Additional information can be obtained on the NCI website and website.

Changes to This Summary (10/05/2021)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Special Considerations for the Treatment of Children With Cancer

Added American Academy of Pediatrics as reference 2.

This summary is written and maintained by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® - NCI's Comprehensive Cancer Database pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of pediatric gastrointestinal carcinoid tumors. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewers for Childhood Gastrointestinal Carcinoid Tumors Treatment are:

  • Denise Adams, MD (Children's Hospital Boston)
  • Karen J. Marcus, MD, FACR (Dana-Farber Cancer Institute/Boston Children's Hospital)
  • Paul A. Meyers, MD (Memorial Sloan-Kettering Cancer Center)
  • Thomas A. Olson, MD (Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta - Egleston Campus)
  • Alberto S. Pappo, MD (St. Jude Children's Research Hospital)
  • Arthur Kim Ritchey, MD (Children's Hospital of Pittsburgh of UPMC)
  • Carlos Rodriguez-Galindo, MD (St. Jude Children's Research Hospital)
  • Stephen J. Shochat, MD (St. Jude Children's Research Hospital)

Any comments or questions about the summary content should be submitted to through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Pediatric Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Gastrointestinal Carcinoid Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: Accessed <MM/DD/YYYY>.

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.


Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the website can be found on our Contact Us for Help page. Questions can also be submitted to through the website’s Email Us.

  • Updated:

If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Gastrointestinal Carcinoid Tumors Treatment (PDQ®)–Health Professional Version was originally published by the National Cancer Institute.”